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Summary. —- We study the hypothesis where the universe U is a five-
dimensional Riemanniun manifold, wich satisfiex certain global topological
conditions. We postulate the existence of a prineciple of relativity wich
treats on equal basis the five dimensions of U; the laws wich satisfy this
principle have an approximate description in a 4-dimensional space-time
manifold T; this gives the possibility of comparing them with the nsual
description of experimental laws. Thus, if we extend to the fifth dimension
the invariance ol general relativity, we obtain classical electrodynamics:
the equations of Maxwell, conservation of electricity, electromagnetic
forces, ete¢. Likewise, the five-dimensional extension of the invariance of
the wave equations leads one automatically to electromagnetic terms,
such as they are actually observed; the electric charge, for instance, is
found to be an integral multiple of an elementary charge which depends
neither on the mass. nor o1 the spin. Among the other consequences of the
theory, we find gauge invariance, and charge conjugation; the marimum
cwlation of pardy in B-decays; the existence of two neutrinos of opposite
chirality.

1. — Introduction.

One usually classities the forces (or «interactions ») which are found in
nature in four types:

[) Gravitational interactions l

. . long range (> 10 ¢m)
11) Electromagnetic interactions I i #e |

ITI) Weak interactions

. . . shiort range (< 10711 em).
TV) Strong interactions
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566 J.-M. SOURIATU

The purpose of a unitary theory is to give a common geometrical deseriptionn
to all the forces of nature, in the same way as general relativity «explains »
the forces of gravitation through the curvature of space-time.

In the 192(’s, since the short-range forces were still unknown, the unitary
theories aimed at unifying the electromagnetic and the gravitational field;
already in 1921, Kaluza’s theory () gave results of this type.

Today, two directions of research seem to be offered:

1) to construct a strictly unitary theory which can explain both long-
and short-range forces;

2) to construct a theory which explains long-range forces, and gives a
geometrical frame for the description of elementary particles and their short-
range interactions.

Now, it is not impossible that five dimensional relativity should allow one
to achieve this second program.

The idea of adding a fifth dimension to space-time appears in many
authors; either to simplify the study of spinors (2), or to give an interpre-
tation to the Hamiltonian action (3), or else in Kaluza’s theory (*).

If such a method is to be more than a simple mathematical trick, it is
necessary to put forward a symmetry, as large as possible, between the five
dimensions.

In Kaluza's theory, one considers a five-dimensional riemannian manifold,
where equations similar to Einstein’s are satisfied; the fifteen equations thus
obtained satisfy indeed this symmetry; but the symmetry is broken by two
supplementary postulates of the theory: a principle of « stationarity » is
added in which the fifth dimension plays a particular role; one of the fifteen
equations is also modified, in a nonsymmetrical way.

In spite of these epistemological shortcomings, Kaluza’s theory contains
some remarquable results: the fourteen equations which are left turn out to
be the usual equations of Einstein and Maxwell; the theory gives a geometrical
origin to the principle of electromagnetic gauge invariance—which principle
is of purely phenomenological origin in ordinary relativity, but is satisfied in
all its physical consequences, including those which pertain to the domain of
elementary particles physics.

Tt would thus be tempting to try to keep those results while discarding the
hypotheses which break the symmetry between the five dimensions; the theory
of Jordan and Thiry (4 for instance, uses in a symmetrical way the fifteen

=3

g. KaLuza: Sitz. Preus. Akad., 966 (1921).

G. Periav: Jowrn. Math. Pures et Appl., 9, 1 (1947).

J.-M. Souriavu: Coll. Blaise Pascal (Clermont-Ferrand, 1962).
Y. THIRY: Journ. Math. Pures et Appl., 9, 275 (1951).
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FIVE-DIMENSIONAL RELATIVITY 367

field equations; unfortunately, this theory keeps the principle of stationarity
where the components g, of the fundamental tensor (*) are independent of
the fifth co-ordinate 5. As a consequence of this prineiple, the five-dimen-
sional universe U acquirex a structure of bundle space; its basis U ix a four-
dimensional Riemannian manifold, which is naturally identified with space-
time; one can give an algorithm wich describes each field of U by means
of fields of U (see the Appendix): thus, the theoryv has a quadridimensional
formulation, which allows one to recognize, among others, the gravitational
and the electromagnetic fields.

A priori; it would seem that this principle of stationarity is necessary
to match the theory with experiment. But it breaks the symmetry between
the five co-ordinates, since in the long run, this theory only possesses the in-
variance of general relativity and the invariance in the gauge transformations

(1) ¥ > — flat) . (see note (),

Now, in 1926, KLEIN (*7) suggested among other hypotheses, to replace
the condition of stationarity by the following one:

(2) —the g, are to be periodical functions of &% —

This condition, much weaker than the preceding one, does not seem to
be sufficient to explain why the universe appears to have only four dimen-
sions; this is perhaps the reason why, in an article published in 1938 (3),
EinsTEIN and BERGMANY suggested to add other conditions (which would
rather tend toward the theory of Kaluza).

However, in 1958, PAULI ((*), note 23) suggested to go back to Klein’s
original idea and to study, on the five-dimensional manifold, other fields than
the tensor field ¢, (in particular a spinor field). Now the theory which we
suggested independently in 1938 realizes this program of Piurl, and gives it
a more precise meaning (**).

Indeed, it ix not difficult to recognize, in Klein’s condition (2), an hypo-
thesis on the topological nature of the universe U7; thix condition, indeed,
suggests that the fifth dimension ix closed upon itself, that is to sav, that U

('} We will denote by latin letters (j. k. ...) the indices which take the values 1, 2,
3. 4, 5; by greek letters (y. », ...) those which take the values 1, 2, 3, 4.

(™) Ref. (*). For a more detailed account of the theory, see (%), Chapter VII.

() A. Ervsteix and P.-G. BErovaxy: dnn. Math., 2, 39, 683 (1938).

(5y O. Krein: Zeits. jur Phys., 37. 895 (1926).

(") 0. KuriN: Nature, 118, 316 (1927).

(%) W. Pavnt: Theory of Relativaty (London, 1938).

() J.-MLSovrtwe: Compt. Rend., 247, 15539 (19538).

(19 J.-M. Sourisu: Géométre et rvelatwilé (Paris, 1963).

i)
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568 J.-M. SOURIAU

is homeomorphic to a «tube », direct product of space-time (which is supposed
to be simply connected) by a circle, and that the &’ are the co-ordinates of the
universal covering of U.

When z° increases by one period, one arrives at the same point of U; all
the fields, therefore, take on the same value (and not only the field g,;).

We should note that, in his account of the theory of Jordan-Thiry (*),
TICHNEROWICZ gave this circular structure to the fifth dimengion; it can be
shown that this circle is spacelike (*); we will note its length 2x&.

Jordan and Thiry’s theory does not give a way to calculate the value of
& (**), but nothing prevents one to suppose that & is very small, and it is clear
that this condition by itself is sufficient to explain the quadri-dimensional ap-
pearence of the universe (*); then the hypothesis of stationarity is no longer
necessary, and it is natural to try to do without it, as we have done. One thus
finds a theory which is invariant in all the local transformations of the form

3) x — fr(ar),

where the f are arbitrary functions (*'); the topological structure attributed
to U plays no role in the field equations, but only in the global transformations
of U. The theory of covering space (see (1), propositions (10.29) and (14.42))
shows that these transformations can be divided in two classes; one, which is
a subgroup, contains the transformations of the form

(4) xt — fHa?), a5 a5 - f(x)  (f* and f have the same period in %),

which have been considered by KrLmiN and PAULI ((%), note 23, formula (29));
we suggested to interpret the transformations of the second class (for instance
the substitution a®->— ) as charge conjugations (1?); in the case of special
relativity (zero curvature), the group of global isomorphisms of the rieman-
nian structure of U is the direct product of the usual nonhomogeneous Lorentz
group L by the complete orthogonal group in two dimensions 02 Now MICHEL

(*y The inverse hypothesis, which has been put forward by some authors, leads
to electrostatic forces which are attractive between charges of the same sign.

(™) In what follows we will give its value.

(™) One can imagine, if one wishes, that each point of space-time is in fact a
submicroscopic circle of radius £; but this picture, like that of the tube, rather hampers
the mind; and it is safer to rely only on differential geometry and on topology.

() Under the same restrictions as in general relativity: the transformation (3)
must be differentiable a sufficient number of times, as also its inverse transformation.

(1) A. Licunerowciz: Théories relativistes de la gravitation et de U électromagnélisme
(Paris, 1955).

(12) J.-M. Souriau: Compl. Rend., 248, 1478 (1939).
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FIVE-DIMENSIONAL RELATIVITY 569

noticed (**) that elementary particles can be characterized by an irreducible
representation of this group L x 02, which confirms this interpretation.

Our theory is fully pentadimensional (see formula (3)); it possesses how-
ever those of Jordan-Thiry and of Kaluza as approximations—in the same
way as a tube can be regarded as a line and described in one dimension pro-
viding it is fine enough; or as a periodical medium (crystal) can be considered
as homogeneous when its period is small enough.

This approximations are useful for the physical interpretation of the theory,
as they allow one to give an approximate quadrimensional picture of it; but
the true program of the theory consists in giving a penta-dimensional description
of physics; the principle of relativity in five dimensions—according to which
the equations of physics must be invariant in the transformations (3) imposes
very strict conditions which it is possible to compare with experiment.

2. — The case of nonquantum relativity.

We will derive the field equations on the manifold U from a variational
principle: the prineiple of 5-dimensional relativity is expressed by writing that
the lagrangian deunsity is invariagnt in the transformations (3).

The methods of difterential geometry allow one to deduce equations ana-
logous to those of general relativity:

1) To each physical phenomenon is associated a symmetrical tensor T,
whose divergence (in the riemannian sense) is automatically zevo.

2) The variation equations of the fundamental tensor ¢,, give the penta-

dimensional Einstein's equation

(5) Ro—3§Rg,.+Ag,. =y z Ty,

where /4 and y denote universal constants and where the sum in the right-
hand side of the equation is extended to all phenomena which are present.
The inferpretation of this results can be given in the approximation of
Kaluza: we first give the approximation corresponding to Jordan-Thiry’s theory
and we then suppose the «radius of the tube» & to be constant.
We then describe the field equations by means of transverse variables

(1%} 1. MicHEL: Nwuovo Ctmento, 9, 319 (1953).

<. 37 - Il Nuovo (“imento.



570 J.-M. SOURIAU

(see the Appendix) !;,m B TW, etc.; we also introduce the quantities

ur?

—
2n us
o S Ad =%
(M) Fuv: E#AV—E,A”,
1 ’/7'\;
(8) JM - Z: 57—11%'

The tensors 4, F , J, will be interpreted respectively as electromagnetic
potential, electromagnetic field, electric current; the five-dimensional equation
div7=10 can be divided quadri-dimensionally into

(9) [div 7], + F,J" =0,

(10) divd = 0 ;

(10) expresses the conservation of electricity; (9) is the expression of the con-
servation of energy and momentum, taking into account the electromagnetic
forces ¥, J”; (9) therefore expresses the principle according to which electric
charges are attached to matter.

Likewise eq. (5) can be divided quadridimensionally; one first obtains the
10 equations

o~

(11) ‘Ryv_ %Egpv+ Ag;w = x[@yv—{— Z T,uv] ’

where @, denote Maxwell’s momentum-energy tensor built up from the F,,;
we recognize Einstein’s equation (with the cosmological constant 4 and
Binstein’s constant y) which allows one to consider all the forms of energy

as sources of the gravitational field. (5) also gives the 4 equations
(12) [div F], = 47 3 J,

which constitute the second group of Maxwell’s equations (the first group being
an immediate consequence of (7)); these equations express as before that the
sources of electromagnetic fields are all the forms of electricity.

Finally, in the approximation of Jordan-Thiry, we have a fifteenth equa-
tion (which is replaced in Kaluza’s approximation by the equation &= const),
which involves a new quantity »= 7’55/52, of which we now give an interpre-
tation.

To this effect, one can use a very general theorem of conservation ((*°),
th. 25, § 34), according to which the initial Lagrangian density can be replaced
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FIVE-DIMENSIONAL RELATIVITY 271

by the quantity X[~ T3]= > r+.4,> J* () the quantity r which is asso-
ciated to each phenomenon can therefore be interpreted as the classical La-
grangian density in the absence of electromagnetic field; we have thus proved the
principle of minimal interactions, according to which the electromagnetic inter-
actions can be obtained by adding to the gauge-invariant Lagrangian ) r the
term A, > J,.

Let us recall that the original pentadimensional Lagrangian density is by
hypothesis gauge-invariant.

3. — Five dimensional wave equations.

We have just seen that the principle of relativity in five dimensions gives
a .complete explanation of classical electrodynamics; can quantum electrodyna-
mics be treated in the same manner?

This problem raises great technical difficulties; in particular, because the
theory unifies gravitational field and electromagnetic field, and that one can-
not be quantified without the other. It seems that the very formulation of
quantum mechanics should be renovated if it is to find its expression within
the frame of differential geometry.

We shall limit ourselves to a partial problem, that of a single particle in
a given exterior field (electromagnetic and gravitational); to this effect, we
shall write the wave equations which satisfy the principle of relativity in five
dimensions on the manifold U, and we shall interpret them in Kaluza’s ap-
proximation.

0-spin particles (see (1%)). — We write on the five-dimensional manifold the
linear invariant equation
(13) D¢ +ag =0,

where ¢ denotes a real wave function, (O Dalembertian in five dimensions,
and a denotes a real constant.

In a standard map (see the Appendix), ¢ has the period 2z in the fifth
dimension; we can therefore write the Fourier expansion

(14) g = > g expliZai],
z

where Z denotes an integer: the ¢, are complex functions of z*; ¢, and ¢_,
are complex conjugates: ¢, is real.

("} The same theorem, when applied to ordinary relativity in the static case,
shows that the Lagrangian density can be replaced by Tj, that is by the density of
energy; it thus justifies the principle of stationary emergy to characterize equilibrium.

(*4y J.-M. Souriav: Coll. Intern. C.N.R.S., Royaumont, 91, 293 (1959).



572 J.-M. SOURIAU

The operator (J can be calculated by the classical formula

(15) Op= 7= I—- ;[V1]g| 9% dngp] -

If we make Kaluza’s approximation and introduce the transverse variables
and the 4 , we have

e 1y ey 1 /—; 1
(16) lgl=&1dl; ¢"=5"; Q”SZ_E]/ﬁA”; 955:5‘[ LRy A Aﬂ]'
if we introduce these expressions in (13) and (15), we see that each Fourier
component @, of ¢ satisfies the quadri-dimensional equation

iZ

72
F Vom [le [Agal + A0u04] — 25

17) Oe,— &

[ + A A”] 2+ ag, = 0;

if we restrict ourselves to special relativity, and if we introduce the quantities

Z1/ 1 /Z?
(18) q:g‘/%ﬁ; m:ﬁl/g—}—a,
this equation becomes
- iqA iqA, me
(19) y””[ ,‘—%‘H y—q—ﬁ”J¢z+ﬁ“¢z:07

which is Klein-Gordon’s equation for a particle of charge ¢, mass m, spin 0,
in the presence of an electromagnetic field.

Thus, five-dimensional relativity gives a geometrical origin to the action
of a field on such a particle (*); it shows furthermore that electric charge is

necessarily an integral multiple of an elementary charge (%/& )\/ x/Tyz, which does
not depend on the mass of the particle.

Giving the charge the usual value e (which is for instance the charge of
a m meson for which eq. (19) is supposed to hold), we get the numerical

(") For the orthodox physieist, this theory gives, oddly emough, an argument in
favour of general relativity: in quantum mechanics, most of the time the gravita-
tional interactions can be neglected, but not electromagnetic interactions; now the
geometrical origin which we aftribute to the latter cannot be dissociated from gravi-
tation, in the very form which Einstein gave to it.

In other words, even if we neglect the gravitational constant y, the electromagnetic
field cannot be described penta-dimensionally without introducing a curvature to the
universe.
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FIVE-DIMENSIONAL RELATIVITY 573

value of &:
hv. 4 2h

(20) g:f]/ £ “M\/G =3.782-10-2 om
ey 2n ec

(G is Newton’s gravitational constant),

this length is extremely small compared to the usual dimensions of particles
(which are of the order 10-1® em); this gives an a posteriori justification to the
initial hypothesis that & is so small that the fifth dimengion will remain hidden.

The theory thus gives a geometrical origin to the quantification of electric
charge, which has no explanation in four-dimensional relativity.

The usual circumstance in quantum mechanics where a neutral particle
is described by a real wave function, whereas a charged particle is described
by a complex wave function, thus appears quiet naturally; it is easy to verify
that the gauge transformations and the charge conjugations (see above) act
in the usual way (cf. (%), note 42.18); in particular, the charge conjugation
[4% — — .} obviously replaces each Fourier component ¢, by ¢_,, which has
the value ¢ .

It is clear that this theory imposes on a spin-0 particle an infinity of charge
states (numbered by the integral values of Z), with a mass spectrum given by
the second of formulas (18); but the numerical values show that only one of
these charge states can be observed (and of course also the opposite charge
state); since the mass differences are of the order #/£5+ 5102 MeV (*).

However the theory gives no explanation of the existence of charge mul-
tiplets which are found among particles which have strong interactions (for
instance the m-meson); but no such explanation was to be expected (see the
Introduction).

Spin § particles (see (11)). — The same method can be applied to spinor
fieldx; it is well known that the spinors of the five-dimensional normal hyper-
bolic space are the same as those of the Minkowski space (cf. (19), (44.33)
and (44.34)); let us consider a spinor w which satisfies the invariant equation

(21) yj(“ﬂp +apy =0
with
plopk Loykeys = 2gih (signature + ————),
(22) ¢, = covariant derivation of the spinors (**) along the direction a’:

a = const.

() Letusnote, however, that certain primary cosmic rays have an energy approach-
ing this value.

(") For the definition of this operation, see for instance (1°) (Section 45) and (1%).

(**) J. A, WHEELER: (Geometrodynamics (New York, 1962).
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574 J.-M. SOURIAU

The eq. (21) can be developed by replacing by their values the Christoffel
symbols and the matrices of Fock-Ivanenko, and one obtains

(23) y O + W : &, [Viglyh— y[0ye— ak%]y’“} p+ap=0.

We now make Kaluza’s approximation and introduce the transverse va-
riables (see Appendix); the intermediate formulae are

~ - 17/ ~ ~ €.
yre=prs Yt = ?’°—E]/§%V”Au: 75—%7/'“1;”
~ € ~
Vu=Vut g Vsdis Vs Vs
from which we obtain
Ve VotV ¥Pu=208u  PE=F00,;
(25) o o
Vu st Vs V=0 Vs =— &
inserting in (23), expanding p in Fourier serie
(26) p = 2 v, exp[iZa’]
z
and restricting ourselves to special relativity, we obtain

iZe iZe 2 11/ %
CAD G [au— T Aﬂ] vz + [a— 7 -'/‘; 'Ys] Yz + 3 1/ %ZF/WYHY”YSWZ =0,

where y*= %* are the usual matrices, and where we have noted

(28) Ys =

2;—5 =Y1Y2YsYa -
The last term in eq. (27) is completely negligible on the scale of quantum

mechanies (in the system of units where % =¢=1, the constant W y/2n 2|27 is
of the order 10-3% em), and we suppress this term. If we now introduce the
quantities m and A defined by

‘m).:Zel/Z—;—ah',

—Ze‘/——ﬁ—aﬁ

(29)

>3
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and make the change of variables

L—i L4y
(30) Y= Py rin Yy,
eq. (27) becomex

X 7 .
31) Y* {Ctt_%LfAu]¢+ %‘P:O

We recognize Dirac’s equation for a particle of charge Ze, mass m, spin %,
in the presence of the electromagnetic field.

Five-dimensional relativity thus gives a geometrical origin to the electro-
magnetic interactions of fermions as well as to those of bosons; further we
obtain the result that the elementary charge is independent of spin.

The weutrino case is obtained by taking Z=0, a=0. The change of va-
riable (30) is then no longer necessary and we obtain (neglecting as before
the last term of (27)) the usual equation

(32) Yl p=0.

We now wish to study the interaction of an eleetron and a neutrino, which
we denote respectively by the spinors ¢, and y,,,.

Among the covariant quantities which can be constructed from these spi-
nors, is the fire-component vector V

(33) Vo= Poeaty Y

taking into aceount (24) and (30), the transverse space-time components of
this vector can he written ax

. . N —ivy; I 14 iy
(34} 17— Yheus Y {__ _liy _ Z_; 2Y_:l q)el .

In the study of %-decays, if we suppose that the electron and the neutrino
which are emitted result from the decay of a charged leptonic current J, we
are led to consider the invariant Lagrangian V*J u

Formulas (29) show that the dimensionless constant 2 is of the order 10+,
the sign in the exponent depending on that of a (note that 2m\/§/a =
=&me h5= 10721 one of the two terms in the expression (34) of 7# will then
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576 J.-M. SOURIAU

be negligible; the Lagrangian can thus be written as

14+ 1+
(35) 9'],, 1/’neut'Y'u _2 Y5 qJel - QJ,, -?15 wneut Y‘uq)el [

where ¢ is a coupling constant.

Now it turns out that experiment leads one to precisely such a form of
Lagrangian: the maximum violation of parity, as expressed by SALAM, LANDATU,
LEE, YANG, ete., is thus a consequence of five-dimensional relativity.

From the Lagrangian (35), we see that the emitted neutrino is an eigen-
vectors of y, (such a neutrino is said to be in a pure state of chirality, or else
that it is a two-component neutrino); the evolution eq. (32) shows that it will
remain in such a state.

But two-component spinors have no existence in five-dimensional geometry:
it is thus necessary to introduce a second two-component neutrino, of opposite
chirality. Now, we know that a second neutrino has indeed been found
experimentally (*).

We thus see that the principle of relativity in five dimensions is perhaps
destined to play a role in the description of elementary particles and their
interactions, even for those which it does not «explain ».

A final remark should be made: if we look algebraically for the set of linear
operators which commute with the y,, we see that it is isomorphic to the
quaternion field ; this allows us to give to the space of Dirac’s spinors a
structure of {-vectorial space, such that the y, will be @-linear (**).

The multiplication of y by a fixed arbitrary quaternion obviously does
not change eq. (21); in other words, the vectorial space of its solutions is also
quaternionic. This property no longer holds in the quadri-dimensional eq. (31)
of the electron, because of the particular role plaid by the quaternion i (see ")
but it remains in eq. (32) of the neutrino; we recognize the gauge transfor-
mation of Pauli-Giirsey.

L

The author wishes to thank Professor L. MicHEL for fruitful discussions
on the interpretation of the theory. and Professor J. MANDELBROJT for help
in the English version of the article.

(*) This is of course independent of the existence of the corresponding anti-
neutrinos; in the theory it may be that the existence of the antineutrinos can be
deduced from the fact that it is necessary to introduce simultaneously two Dirac’s
spinors in order to have the spin representation of the complete Lorentz group in
five dimensions.

() See (19), Sections 43 and 44. In fact, the complex number ¢ that we have in
the formulas (14), (17), (19) can be considered as a particular guaternion.
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APPENDIX

The interpretation of fields in the theory of Jordan-Thiry.

To describe the five-dimensional manifold U, we use co-ordinate systems
or maps which we consider as applications of R® on [.
Thux if
Il

is an element of R® the point M of U which has these co-ordinates in the
map F will be denoted by

¥ = F(X).

We shall only use standard maps of U, that is those such that x5 have
the period 2.

M being a point of U, the fibre I which passes through M is the closed
curve obtained when .° alone varies (for example from 0 to 2x); if we note

xt
r.’
X = ,
J‘3
xt

we see that the fibre F( :\') depends only on the map F and on X we shall write
M= F(X).

We then see that the set (A' of the ’i[ can be (*Onsi
dered as a four- dlmenslondl manifold, of w h1(*h 7 is

a map (since Te RY); it is this manifold " which is
interpreted as the usual space-time.

Let us note that two different standard maps F
and F* can be equivalent in [':

Fig. 1.

F— pr,

In this case, if we write M — F(X) = F¥*(X*), it is a consequence of the
axioms of the theory that

Yr— X, (i.e. x# = a*e for p=1,2,3,1),

5135



578 J.-M. SOURIAU

The co-ordinate transformation which makes one pass from F to F* is inter
preted as a gauge transformation, if we have the 4 sign before x5 and as
charge conjugation if we have the — sign. It does not modify the co-ordinates
of space-time z*.

An arbitrary geometrical field defined at the point M can be represented
by the components Y, in a map ¥; the variance of the field will be caracterized
by the transformation formulas of ¥, when one passes from one map to
another; fields therefore have both a space-time variance and a gauge variance.

It can be useful to associate to each standard map ¥ a map F, equivalent
to F'in U, and which is transverse, that is such that the hypersurfaces x* = const
are orthogonal to the fibres; except in some rare cages, this condition can be
realized only in one point; it can be proved that the components Y,in F can
be expressed in terms of the transverse components Y, in # and of the quan-
tities o7, =¢,5/¢5s; in a gauge transformation [#°—x°4-w], the transverse
components Y, are invariant, the <7, transform according to the formula

(=, +0,u] ().

The field equations can therefore be expressed by means of gauge-inva-

riant variables (the transverse components ?,,) and of the potentials «7}; the
equations will then be automatically covariant both in space-time transfor-
mations, gauge transformations and charge conjugations.

(") This method can easily be generalized to the case where the variance involves
second derivatives, or even derivatives of a higher order (for instance in the case of
connections); see (19), Section 41.

RIASSUNTO (9

Si esamina l'ipotesi che 'universo U sia un complesso di Riemann a c¢inque dimen-
sioni, che soddisfa alcune condizioni topologiche globali. Si postula l’esistenza di un
principio di relativitd che tratta in modo uguale le cinque dimensioni di U; le leggi
che soddisfano a questo prinecipio hanno una descrizione approssimativa in un com-

plesso spazio-tempo a 4 dimensioni ﬁ; ¢id da la possibilita di confrontarle con la deseri-
zione usuale delle leggi sperimentali. Cosi, se si estende alla quinta dimensione I'inva-
rianza della relativitd generale, si ottiene Delettrodinamica classica: le equazioni di
Maxwell, la conservazione dell’elettricita, le forze elettromagnetiche, ecc. Similmente,
P’estensione in cinque dimensioni dell’invarianza delle equazioni d’onda ci porta auto-
maticamente a termini elettromagnetici, quali si osservano effettivamente; si trova,
per esempio che la carica elettrica & un multiplo intero di una carica elementare che
non dipende né dalla massa, né dallo spin. Tra le altre conseguenze della teoria troviamo
Pinvarianza di gauge, © la coniugazione delle cariche; la massima wviolazione di parita
nei decadimenti v; lesistenza di due neutrint di chiralith opposta.

(*) Traduzione a cura della Redazione.
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