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Differential geometry, the contemporary" heir of  the infinitesimal calculus of the 
17th century, appears today as the most appropriate language for the description 
of physical realiO,. This holds at every level: The concept of "connexion," for 
instance, is used in the construction of  models of  the universe as well as in the 
description of the interior of  the proton. Nothing is apparently more contrao' to 
the wisdom of  physicists; all the same, "it works." The pages that follow show 
the conceptual role played by this geometry in some examples--without entering 
into technical details. In order to achieve this, we shall often have to abandon 
the complete mathematical rigor and even full  defir~tions; however, we shall be 
able to give a precise description of the connection of ideas thanks to some 
elements of  group theory. 

1. W H A T  IS DIFFERENTIAL GEOMETRY? 

We know that Euclidean geometry is based on the notion of equal 
f igures--two figures are said to be equal if they can be brought into coin- 
cidence by an operation called displacement. 

By noticing that the Euclidean displacements form a group, in the sense 
today quite classically defined by Evariste Galois, F. Klein gave a 
generalization to the concept of geometry; more precisely, a classification of 
geometries (Erlanger program, 1872). A geometry is given by a set E (the 
space) and a group G of transformations of E, which plays the roll of 
displacements. 

Let us take as example an ordinary surface S, for instance a sphere. We 
can choose as group G for the set of  all transformations of S that are 
continuous and have continuous inverse (such transformations are called 
homeomorphisms); the geometry associated with this choice of  G is by 
definition the topology of the surface. 
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The differential geometry of S is obtained if we choose a subgroup G of 
the group of homeomorphisms; we require every element of G to be differen- 
tiable, which means that the functions involved have partial derivatives of all 
orders. The elements of this restricted group are called diffeomorphisms of 
the surface S. These diffeomorphisms have for instance the property of 
transforming two curves traced on S that are tangent to each other into two 
curves that are also tangent, and two osculating curves into osculating 
curves; this means that these so-called "contact properties" belong to 
differential geometry. 

The differential geometry is not concerned only with surfaces; the 
general spaces involved are called manifolds. Curves are manifolds in one- 
dimension; surfaces are manifolds in two-dimensions; and, in general, one 
considers manifolds of arbitrary n-dimension. 

Is it so hard and so abstract to imagine a manifold in four-dimensions 
for instance? 

Let us consider the set D of all straight lines of ordinary space. We can 
convince ourselves easily that a line depends on 4 parameters and that it is 
natural to choose 4 numbers in order to identify it (for instance the coor- 
dinates x 1 , Yl and x 2, Y2 of its intersection with 2 parallel planes P~ and P2). 
It is clear that this system of coordinates is not valid for all straight lines. 
For instance, it will become necessary to choose another set of planes and to 
define new coordinates in order to identify a straight line in the case when it 
becomes parallel to the initial planes; and it can well be imagined that for 
certain lines one has to take a 3rd pair of planes. 

The situation is entirely analogous in the case of a sphere, for instance 
the surface of the Earth. We can choose coordinates on the Earth; this is 
necessary when we want to construct a map. In order to represent all of the 
Earth, we have to construct an atlas composed of several maps (for instance 
a Mercator projection and 2 maps of the polar regions). 

This same language is used in order to define a manifold V of  arbitrary 
n-dimension: One requires the existence of an atlas of V, constituted of 
"maps"  or "coordihate systems," which represents all of V. The only 
condition that is required is that the formulas for changing coordinates, 
which effect the transition from one map to another, should be differentiable. 

So, the set D of all straight lines of ordinary space is a manifold; the 
dimension of D is 4, because we need 4 coordinates in order to identify a 
straight line d, considered as a point of  D. 

2. A LITTLE BIT OF HOMOTOPY 

We have just studied the manifold of straight lines, which we have 
called D; we can associate with it another manifold L, having the same four- 
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dimension, the points of which will be oriented lines (can you find an atlas of 
L composed of 6 charts?). We shall use L further as the manifold of the light 
rays. 

Since a line d has two orientations, I' and l", say, we can associate the 
two points l' and l" of L with the same point d of D (see (Fig. 1). We say 
that L is a covering space of D. 

The manifold L is made out of a single piece, in the sense that two 
points of L can always be joined by a continuous curve (let us think of the 
manipulations of a stick!); we say that L is connected. 

We have just found a connected covering space of the manifold D. For 
other connected manifolds, there are no such connected coverings; we say 
that such manifolds are simply connected. For instance, a sphere S is simply 
connected and the manifold L of light rays, too. 

Let l be an oriented line, that is a point of L. Let us denote by R(l) the 
same line but oriented in the other direction. A little thought would convince 
us that R is a diffeomorphism of L; it is clear that the composition R o R of 
R with itself the identity I on L. Consequently, R and I form a group H of 
diffeomorphisms of L, and we can say that the manifold D is the quotient of 
the manifold L by this group H; we shall write this as D = L : H. 

This situation is general: If V is a connected manifold, there exists a 
simply connected manifold W, a group H of diffeomorphisms of W, such 
that V = W : H. Together with precise conditions, which of course can not be 
described here in detail, this construction is standard: The manifold V 
defines entirely the manifold W (which is called the universal covering of V) 
and the structure of the group H (called the homotopy group of V). 

Of course, these concepts can scare one by their abstraction, but in 
physics one comes across various phenomena that can not be understood 
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without the help of the key given by homotopy theory. We shall see several 
examples of this. 

The displacements of Euclidean space constitute, as we have just said, a 
group; but they form also a manifold of six dimensions (it is not too difficult 
to choose 6 parameters in order to parametrize a displacement, for instance 
the coordinate of the image of a point and 3 rotation angles. Such objects 
that are simultaneously groups and manifolds (with a few rules of 
compatibility between the two structures) are called Lie groups (after 
Sophus Lie, a Norwegian mathematician). Lie groups appear today as one of 
the most important achievements of pure mathematics and of theoretical 
physics. 

What does the theory of homotopy teach us when applied to a Lie 
group G? if G is not simply connected, its universal covering G'  is still a Lie 
group; the homotopy group H of the manifold G is a commutive subgroup of 
6 1  , 

Let us consider the example of the group G of Euclidean displacements. 
In this case, the homotopy group H has 2 elements--the identity and another 
one; the universal covering G'  is consequently different from G. A question 
arises then: since classical Euclidean geometry is associated with G, does 
there exist a supergeometry associated with the group G'?  This is an inverse 
problem (knowing the group, to find the space), which has been resolved by 
Elie Cartan. 3'4 

Contrary to what one might believe, it is a concrete problem. The 
material objects that most resemble mathematical points are obviously the 
particles of microphysics. Experiments show that they come in 2 kinds, ruled 
either by the classical geometry of the group G or by the supergeometry of 
the group G' ;  they are called, respectively, bosons and fermions. 

Go around an ordinary object, a boson for instance. When you have 
completed the circuit, you will again find yourself at they place of departure 
and nothing has changed. But if you do the same thing for a fermion, the 
situation will be different! In order to recover the initial state, you will be 
obliged to circle the fermion twice. Why twice? Simply because the 
homotopy group H is a two-element group. 

Nothing is more common than a fermion (for instance an electron); and 
nothing contradicts more our habits of thought than this double circuit 
paradox. However, this is not a crazy idea; the corresponding experiment has 
been performed and has given the result just announced about half a century 
after its theoretical prediction. 

This kind of fact shows that our space intuition is not firm and that it is 
necessary to have recourse to concepts of differential geometry, for instance 
homotopy, in order to understand correctly the real world. 



Physics and Geometry 137 

3. WHAT IS A GEOMETRICAL OBJECT? 

In order to have a useful answer to this question, it is indispensable to 
commit to memory two algebraic definitions, even if we don't like that. 

(a) Let G and H be two groups, M a mapping from G into H (if you 
prefer, a function defined on G, with values in H);  we say that M is a 
morphism if it has the following property: 

M(gg ' )  = M(g)  M(g ' )  

valid for any elements g and g '  in the group G. 

(b) Let F be a set and consider the group F! of all permutations (or 
bijections) of F. We call action of  a group G on a set F every morphism of 
the group G into the group F! of the permutations of F. 

Let us return now to Euclidean geometry; G is here the group of 
displacements. Let us consider a geometric figure, for instance a triangle 
(A, B, C). If  g is a displacement, the new triangle (g(A), g(B), g(C)) will be 
called the image of the triangle (A, B, C) through the displacement g, and we 
can write this: 

I(g)(A, B, C) 

Three lines of calculation are enough to verify that the operation 
"image" (we just called it I )  is an action of the group G on the set of all 
triangles [in the sense (b) above]. 

As a generalization, every time we will have defined the action of a 
group G on a set F, the elements of F will be called "geometric objects." 
Some of those objects, such a triangles, can be figures composed of space 
points; but there are other objects, and they are just as important for the 
physical sciences. 

So, for example, mechanics, electromagnetism, and crystallography 
have led us to create and use the following concepts: free vectors (axial or 
polar), sliding vectors, torsors, and tensors; all these are geometrical objects 
for the group G of displacements. The spinors--which have been constructed 
of course in order to describe particles with spin--are  geometrical objects for 
the group G'  of the supergeometry studied in Section 2. 

The otd infinitesimal calculus is mainly based on the notion of points 
tat are infinitesimally close to a given point. There are again geometric 
objects, not only for Euclidean geometry, but also within the broader 
framework of differential geometry. The terminology that is used is that of a 
tangent vector v to a manifold X in a point x. If g is a diffeomorphism, the 
action of g transforms v into a new vector, tangent to X at the point g(x). 

825/13/L10 
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One can define the product of v by a number, the sum of two tangent 
vectors, and these operations are invariant under diffeomorphisms. As a 
consequence, all the possibilities of linear algebra will allow us to create new 
geometrical objects attached to a point X: linear forms (or coveetors), 
tensors of any order p, antisymmetric tensors or p-forms, densities, tensor 
densities, capacities, orientations, and so on. All these objects have an 
important role to play in mathematical physics. 

Let us finally quote some other geometric objects which have somewhat 
subtle definitions, but are just as useful: germs, jets, connexions, and so on. 

4. SYMMETRIES 

Let us consider a figure that is symmetric in the usual sense of the 
word, for instance a triangle (A, B, C) with 2 equal sides: AB =AC. 

The symmetry of this figure is the symmetry with respect to the height 
from A; it is a displacement g of the plane, characterized by the properties 
g(A) = A, g(B) = C, and g(C) = B. In other words, the image under g of the 
triangle (A, B, C) considered as a set of 3 points (without ordering) is the 
triangle itself; if we denote by f the figure constituted by this triangle, we 
have consequently g ( f ) =  f 

Let now f be any figure or, more generally, a geometrical object. We 
can still call symmetries o f f  for all the elements g of the group G that satisfy 
this equation g ( f ) = f ;  this subgroup is called the symmetry group or 
stabilizer of the o b j e c t f  We will see several examples of this. 

5. FIELDS A N D  R E L A T I V I T Y  

Consider a manifold X, and a function associating with each point x of 
X a tangent vector at Xi Such a function is called a veetorfieM of X; in an 
analogous way one defines tensor fields, p-forms, etc., for all the categories 
of objects that we quoted in Section 3. 

We know that the field theory is a fundamental branch of classical 
mathematical physics (examples are fluid mechanics, the theory of elasticity, 
the Maxwellian electromagnetic field, etc.). 

A fundamental remark: If g is a diffeomorphism of the manifold X, then 
the image under g of a field is again a field of some nature; consequently 
fields themselves are objects of differential geometry, As any other 
geometrical object, a field hs consequently a symmetry gyvup (see Section 4). 

Let us consider the example of a crystal, considered as a continuous 
unbounded medium-- that  is, as afield in the sense just mentioned. We know 
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a priori that its symmetry group is a subgroup of the group G of Euclidean 
displacements; a courageous mathematical analysis shows that there are 
exactly 230 types of subgroups of G that are suitable (crystallographic 
groups). We have consequently a fundamental classification of crystals; it 
allows us to recognize a priori those that can give rise to a given type of 
physical phenomena (for instance piezoelectricity, bi-refrigence, etc.). This 
classification remains relevant even when one has at one's disposal a more 
refined model that takes into account the atomic architecture of the crystal. 

We call a manifold Riemannian if on it we are given a tensor field g.,, 
satisfying the conditions g~,. = g.,, and det(g.~) 4= 0. 

Albert Einstein has shown that the most exact representation of 
gravitation is given by such a Riemannian structure on 4-dimensioned 
spacetime, and that the g.,, can be considered as gravitational potentials. 
This theory--general relativity--has been confronted with observation unin- 
terruptedly for more than 60 years. Thanks in particular to the achievements 
of NASA, it i,s today a physical theory that has given rise to predictions 
satisfied with the highest precision (of the order 10-12). 

We should notice that there exists and inverse relationship between 
gravitational effects, on the one side, and the symmetry of the fields, on the 
other; in particular, the total absence of gravitation (Minkowski space) gives 
rise to maximum symmetry, defined by a group in 10-dimensions), called the 
Poineard group. The Poincar6 group defines of course a geometry on 
spacetime; if one allows only this geometry as relevant physical reality, then 
one is doing special relativity. 

We see clearly the relationship between both general and special 
relativity: The two theories are associated with two geometries and 
consequently with two groups; the second one is a subgroup of the first. 
Consequently, a geometrical object in general relativity induces 
automatically an object of special relativity, but the inverse problem does not 
have a standard solution; there are physical quantities having the same 
geometrical status in special relativity but different ones in general relativity. 
This difference is in itself a basic item of information about the nature of the 
phenomenon, as important as the information given by the dimensional 
analysis. 

Let us take the example provided by the thermodynamics of  continuous 
media. There are a large number of variables intervening here: specific mass, 
energy, momentum, velocity, stress, strain, speed of deformation, 
temperature, heat, entropy, etc. How do we put some order into this jumble? 
The principle of general relativity gives an answer--unusual but et~cient--to 
this problem. According to this principle, physical phenomena are 
represented by geometrical objects associated with the group of 
diffeomorphisms: This allows a fine classification in which, for instance, 
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temperature and velocity are associated to define a tangent vector in 
spacetime (according to prescription already proposed by Max Planck); heat 
and entropy production define a vectorial density etc. Recognizing these 
facts, we obtain immediately information on possible relationships between 
these quantities (it is for instance out of the question to add a vector and a 
vectorial density! The result would not be the same any more after a 
diffeomorphism). One gets to see all that one could hope to obtain by 
studying thermodynamics from the point of view of differential geometry. 

General relativity gives us universal rules for classification and selection 
of quantities and physical laws, at least on the macroscopic level° A theory 
that has been suitably formulated in this framework can be easily translated 
into special relativity and then into classical mechanics. 

For some years now, the continuous media specialists have invoked a 
certain "principle of material indifference," which is considered necessary in 
order to write down correctly the laws of behavior of materials. But one has 
never been able to formulate this principle exactly. However its formulation 
is within reach: It suffices to accept a detour through general relativity. The 
same method allows us also to treat simultaneously macroscopic elec- 
trodynamic phenomena, such as magnetization, magnetostriction, 
gyromagnetic effects, etc. 

6. SYMPLECTIC MANIFOLDS 

Symplectic geometry must resemble Euclidean geometry to start with: 
One considers a manifold X, endowed with a tensor field a (it will replace 
the metric tensor g), which is assumed reversible [det(e,~.) 4: 01 andJTat (i.e., 
there exists an atlas of X where the t~,,, are constants). But then we replace 
the symmetry condition g,~,= g~, by the antisymmetry condition 
a,~, =-c~,u.  One can prove that these conditions are compatible only if the 
dimension of the manifold X is an even number. 

The symplectic structure was discovered in 181I by Joseph-Louis 
Lagrange(4); the covariant and contravariant components of the tensor a are 
the "brackets" and the "parentheses" of Lagrange. Their discovery is the 
result of deep investigation into the structure of the equations of mechanics. 

The manifold to which Lagrange gives a symplectic structure is the set 
of solutions of equations of motion belonging to a dynamical system---we 
shall simply say the space of motions. 

This theory, developed in Meeanique Analytique, a classic par 
excellence, was however not really understood by the contemporaries and 
followers of Lagrange; Poisson and Hamilton, for instance, transmitted it 
only in a truncated form. In particular, the symplectic structure was defined 
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on "phase space," a disastrous choice which leads at the same time to the 
disappearence of the global properties and relativistic properties of 
mechanics. 

A century later, Elie Cartan, completing the works of Henri Poincar6 
on integral invariants, reinvented the symplectic form (the "absolute integral 
invariant'), and the true dimensions of Lagrange's work reappeared 
progressively. 

In its present geometric form, this theory has not been developed before 
the 1950s. It is easy to write down the symplectic form o with the help of 
initial conditions: positions, velocities, and timCS"2°); the forces thus acquire 
the status of components of a, which fixes their variance uncer arbitrary 
change of coordinates. In the case of rotating reference frames, for instance, 
the centrifugal and Coriolis forces appear spontaneously. It is clear that the 
flatness condition of 6 (see above) imposes restrictions on the forces; in the 
case of the electromagnetic forces, one thus sees the appearance of Maxwell's 
homogenous equations. Let us indicate finally that the "principle of virtual 
work" can be obtained by a truncation of a (forgetting the time variations). 

The symplectic structure appears also in all spaces whose points are 
solutions of a problem in variational calculus--the calculus which was 
developed, as one knows, by Euler and Lagrange, and which concerns the 
determination of maxima and minima. 

For instance, a straight line is the shortest distance between two points. 
It follows from this that the set L of  oriented straight lines are a syrnpteetic 
manifold. This structure is particularly important in optics: The instruments 
(mirrors, telescopes, photographic lenses, etc.) are characterized by the 
transformation (input)~ (output) that they impose on light rays. This is a 
point transformation of the manifold L of rays. One of the properties of this 
transformation is that it commutes with the object which we denoted by R in 
Section 2: This is the exact formulation of the principle of  exact return of  
light. Another property of this transformation is that it preserves the 
symplectic structure; this theorem of Lagrange follows simply from the fact 
that the laws of optics can be obtained from a variational principle, the prin- 
ciple of Fermat. 

Cleverly exploited by the physicist Ernst Abbe, this fundamental result 
lies at the basis of the modern methods of calculation of optical instruments 
(relations of aplanetism, eikonal, etc.). Abbe was one of the co-founders of 
the Zeiss enterprise in Iena. 

The possibility of using a variational principle in classical mechanics 
(Pierre de Maupertuis and William Hamilton) suggested quite soon an 
analogy of structure between classical mechanics and optics; this analogy 
was exp'loited in the early quantum theories, in particular in the wave 
mechanics of Louis de Broglie. 
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However, the variational formulation of mechanics is less powerful than 
its symplectic formulation: It is not manifestly covariant under the Galilei 
transformations (see Section 7), it requires an arbitrary choice of potentials 
and vector potentials, and finally there are systems for which it is 
impossible--while the symplectic formulation still exists. For instance, this is 
the case for spinning particles (see Section 7); the classical equations of 
motion for these objects ~2) were written down and used only after their 
description in quantum mechanics became known. 

7. D Y N A M I C A L  G R O U P S  

Let X be a symplectic manifold (Section 6). The symmetries of the field 
c (which has been defined in Sections 4 and 5 above) are called symplecto- 
morphisms of X; the group of symplectomorphisms defines the symplectic 
geometry of X. 

Let us study a free dynamical system in space (for instance any 
molecule or the solar system). Each possible motion of the system is 
obviously an object of Euclidean geometry; consequently, the group of 
Euclidean displacements will act on the symplectic manifold X of the 
motions. 

In all the known cases, one notices that this action is obtained by 
symplectomorphisms; consequently, one of the essential physical charac- 
teristics of the system is a morphism 

G ~ (symplectomorphisms of X) 

where G is the group of Euclidean displacements. Every time a Lie group G 
is endowed with such a morphism, we say that G is a dynamical group of X 
(technically one requires in addition to some differentiability conditions). 

Every "symmetry" of the system, defined by the existence of a 
dynamical group, is associated with a conservation law. This is shown by a 
fundamental theorem established by the mathematician Emmy Noether in 
1918 (the theorem, as written down originally, concerns groups of one- 
dimension and variational systems; we shall study the general case). 

If G is a dynamical group of a symplectic manifold X, we can associate 
with every point of X a new quantity called a moment; this moment itself is a 
geometrical object belonging to the space of torsors of the group G (some 
indications for connoisseurs: a torsor is a 1-form of the Lie algebra of G; the 
action of G is coadjoint). The number of components of the torsor is equal to 
the dimension of G. 
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We shall forgo here a mathematical definition of the moment, giving 
only some examples. 

Let us take the case of a dynamical system that is free in space and the 
group of displacements; then the moment is an entity of 6 components 
consisting of the linear momentum and the angular momentum of the system. 
By their construction, these quantities remain fixed when the system evolves. 
For this reason, they are called "constants of motion," "conserved quan- 
tities," or "first integrals." 

Let us now consider the manifold L or oriented lines or light rays, the 
symplectic structure of which we have studied in Section 5. There, too, the 
group of displacements are a dynamical group; the associated moment exists, 
but what good is it? 

In fact, the mathematicians have known for a long time the 6 
components of this moment: They are the "Pluckerian coordinates" of a line, 
used in elementary geometry. Anatural question arises: Is it possible to give 
them a mechanical interpretation in terms of linear and angular momenta? 

This interpretation is, in essence, the one given by Einstein in 1905, ~6) 
when he invented a particle that is a carrier of light (the photon). Einstein 
assigned explicitly to this particle various mechanical properties, such as 
linear momentum, and he showed that the photoelectric effect could be 
correctly interpreted as a transfer of quantities associated with a photon to 
the target matter. 

Consequently, it is the symplectic quantities, and particularly the 
moment, that appear in a transfer between apparently disjointed domains of 
physics, such as optics and mechanics. This suggests of course that the 
symplectic structure plays a universal role. In fact, all conserved quantities 
that are usually considered, in mechanics or in the rest of  physics, can be 
obtained as moments o f  a suitable chosen dynamical group G. We shall 
verify this with new examples. 

A conservative system is obviously invariant under the group of 
"temporal translations"--whose operations retard or advance all motions by 
the same time. The moment corresponding to this group is the energy. 

A free dynamical system is a geometric object, geometric not only 
under the Aristotle group (Euclidean displacements + temporal translations), 
but also under a group of 10-dimensions (the Galilean group), which can be 
obtained by completing the group of Aristotle by the transformations of 
Galilei--transformations which consists in the addition of one and the same 
initial velocity to all the points of the system. An application of Noether's 
symplectic theorem then predicts that the motion of the center of mass is 
rectilinear and uniform; this result is sometimes known as the "principle of 
inertia" (it was formulated for the first time by Gassendi). 

In order to establish this result, Newton had to introduce a special prin- 
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ciple into mechanics, the equality of action and reaction. Here this is not 
necessary; the Galilean symplectic in variance is a sufficient principle. 

Every time that we are in the presence of a dynamical group G, there 
arises the problem of "equivariance": We know the action of G on the 
symplectic manifold X, on the one hand, and on its torsors, on the other. The 
question is to determine whether the moment mapping, inserted between 
those 2 actions, leaves them compatible. One of the subtleties of the situation 
is that the moment mapping is not completely defined: one can add an 
arbitrary constant to it. 

Luckily the mathematicians have constructed a tool called cohomology, 
which allows us to analyze this situation. This theory enables us to know 
whether equivariance is or is not possible, and it allows us to diminish the 
arbitrariness of the additive constants. Even better, it allows us to define new 
quantities--the cohomology classes--which will be physically interpreted. 

When applied to the Galilei group-- that  is, to classical 
mechanics--cohomology gives essential result. 

Out of the 10 quantities constituting the moment~ only one, to wit the 
energy, contains an arbitrary irreducible additive constant. 

Correlatively, there appears a new quantity, the class of cohomology of 
the system; this is simply the mass. 

Everybody who has taught physics knows that the concept of mass is 
not very intuitive; this difficulty is related to the subtle status that we have 
just attributed to this quantity. The question is not only one of a 
mathematical artifice: We shall see that cohomology is an effective tool for 
the analysis of some fundamental facts. 

Given any system with nonzero mass, we can show that there exists a 
dynamical group larger than the Galilei group and having the 14-dimensions; 
this allows us to decompose the energy into a sum of 2 conserved quantities: 
kinetic energy (of the center of mass) and internal energy. Similarly the 
angular momentum is a sum: orbital angular momentum + internal angular 
momentum. There are consequently 14 conserved quantities. 

It is true that most of these results can be obtained without the use of 
the symplectic structure, but here they acquire a universal character which 
they did not have before; they are valid for all Galilean dynamic 
systems--even those that cannot be interpreted as a system of interacting 
mass points (and for which the Newtonian principle of equality of action and 
reaction cannot be formulated, e.g., for a system that contains magnets). 

One can make the transition from classical mechanics to relativistic 
mechanics without making any change to the symplectic structure--it  
suffices to replace the Galilei group by the Poincar+ group (which was 
defined above in Section 5). It is the differences of structure between the two 
groups that generate the qualitative differences between the two mechanics. 
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For instance, the "symplectic cohomology" of the Poincar+ group is 
zero; it follows that there is no arbitrary constant in the relativistic 
energy--and that there are no fixed relativistic mass. 

For a given observer, the same dynamical system can be studied either 
in classical mechanics or relativistic mechanics; there exists simple geometric 
procedure which allows us to identify the moments  obtained in the two 
theories. Among the 10 identities thus obtained one finds also the celebrated 
formula of Einstein, 

E = me 2 

which relates the relativistic energy E and the Galilean mass m. It is 
significant that Einstein justified this formula only by rather obscure 
arguments; the geometrical technique appropriate for this demonstration was 
not available in 1905. It may be mentioned that this obscurity persists is 
most modern treatises on relativity. 

Let us return to classical mechanics, and consider a point that is 
attracted or repelled, according to an arbitrary law, by a fixed point O. This 
system clearly has spherical symmetry around O; the associated momentum 
is the angular momentum about that point. However, in the particular case 
of a Coulomb f ield,  there is another conserved quantity (the Laplace-Lenz 
vector); this corresponds to a hMden symmetry ,  and the dynamical group 
associated with it is composed of the rotations in a 4-dimensional Euclidean 
space which remains rather mysterious. 

This interpretation was guessed in 1926 by Wolfgang Pauli, ~16~ in a 
work on the spectrum of hydrogen; this paper has historically been at the 
origin of quantum mechanics. It is this particular symmetric group that gives 
rise to the degeneracy between energy--levels of hydrogen--and conse- 
quently to the energy shells for electrons in an arbitrary atom (in the 
"hydrogenoid" approximation). These energy shells explain the old notion of 
chemical valence, such as the quadrivalence of carbon~ which is a 
fundamental property for all of organic chemistry and consequently for life 
itself. 

In nuclear physics,  the "shell" models are in competition with the 
collective "droplet" models. The latter can be constructed also from a 
dynamical group (consisting of linear volume preserving transformations of 
space) and from the properties of the associated moment (S. Sternberg and 
G. Rosensteel). 

To end, let us given some example of the inverse procedure: Knowing a 
Lie group G, find a symplectic manifold X such that G is a dynamical group 
of X. Under certain conditions, this problem has a regular solution, the 
Kirillov cons truc t ion- -which  has to be completed in order to take 
cohomology into account. 
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Thus the Poincar6 group is sufficient to define dynamical relativistic 
systems in an "abstract" way; these mathematical models are ready to 
accomodate the elementary particles that really exist. 

The models are indexed by two numbers, the rest mass and the spin; if 
the rest mass is zero, a third quantity is required, viz., the heIieity', it appears 
as a spatial orientation that can take two values (we can think of the turning 
senses of a corkscrew). 

All these quantities can be observed and measured on realparticles. For 
instance, mass and spin are part of the "identification card" of the particles. 
The photon, for example, has mass zero and spin 1. Indeed, there exist two 
kinds of photons which are polarized circularly to the right or to the left, 
depending on the value of their helicity; we can select them in natural light 
with the help of a quartz prism (rotational bi-refringence of Fresnel). 

Progressively experiment has uncovered other quantities that are carried 
by real particles (isotopic spin, hypercharge, strangeness, color, flavor, etc.); 
simultaneously it has shown that those particles can be grouped into 
multiplets: doublet of nucleons, triplet of pions, octet of baryons, triplet of 
quarks, etc. 

We can associate with each of these multiplets a symplectic manifold, 
which can be constructed by Kirillov's method, starting with a Lie group 
called a gauge group. The new quantities observed in this way are precisely 
the moments associated with this group. 

These gauge groups allow us to classify particles and to define their 
dynamics; they offer a reasonable hope that some day we shall better 
understand the structure of matter. 

8. THE P R E Q U A N T U M  LEVEL 

We owe to Elie Cartan a general theory of p-forms (see Section 3); the 
two essential procedures of this theory are the differentiation of forms (that 
generalize the classical operations of gradients, divergence, and curl), and the 
reduetion (which in some cases allows one to characterize a form with the 
help of a manifold of lower dimension). 

Let us consider a manifold Y endowed with a 1-form (in other words a 
tensor field co,). It can happen that co is irreducible, but that its derivative 
do) is reducible; this situation is known as a contact structure. In this case, 
one can show that the dimension of manifold Y is odd (i.e., given by 2n + 1), 
and that the form do) can be reduced, in general, giving a symplectic 
structure to a manifold X of dimension 2n on which Y is projected (Fig. 2). 

The set of points y of Y that are projected into the same point x of X is 
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Fig. 2. Prequantization. 

a curve. Let us assume that this curve is closed, and consider the circulation 
h on anyone of them: 

h =,I I co, dy" 

We can show that h is a constant (independent of the choice of the 
curve). The case which will interest us here is where h is equal to Planck's 
constant h = 6 . 6 2 6 2 ×  10-27gmcm2sec  ~. We shall say that Y is a 
quantum manifold. 

Of what use is this new structure? Is is to be employed to describe some 
natural phenomena. We shall in fact state a new principle of physics: every 
dynamical system in reality is associated with a quantum manifold 1I. In 
Sections 6 and 7 we have described various dynamical systems with the help 
of a symplectic manifold)(; this manifold X has to coincide with a manifold 
obtained from Y by the construction of Fig. 2. 

Consequently the "classical" description at the level of X is incomplete, 
and we have to reconstruct a quantum manifold Y starting with X. This 
purely geometric problem is called prequantization of X, (13) Theoretically 
this problem is completely solved: We know how to formulate conditions 
that allow us to determine whether there is no solution, one solution or 
several solutions. 

Before we examine examples, let us make a remark: This problem is 
consistent in dimensional analysis, because Planck's constant h and the 
symplectic form (~ defined by Lagrange (Section 6) both have the dimension 
of an action, that is to say ML2T -t. 



148 Souriau 

The elementary particles are associated with symplectic manifolds (see 
Section 7); we can show that the problem of prequantization can be solved 
only if the spin s of the particle is an integral multiple of the number h/47r; 
and this happens for all known particles: s = h/47r for protons, neutrons, and 
electrons; s =  h/27~ for photons; etc.; we observe a multiple going up to a 
factor of 6. In all these cases consequently the quantum manifold Y exists 
and one can show that it is unique. 

For other systems, the problem of prequantization of X can have 
several solutions: the geometry even tells us exactly how many solutions 
there are: as many as there are morphisms (a, Section 3) of the homotopy 
group of X (Section 2) into the torus (that is, group of rotations of the 
circle). Theoretically this number can be always determined. 

Accordingly, for a charged particle circulating around a straight 
solenoid, there is an infinity of possible prequantizations (one can identify 
each of them by a point on the torus); the one "chosen by nature" is charac- 
terized by the intensity of current in the solenoid. ~9) At first sight, this 
situation is very classical; in fact it is paradoxal to common sense, because 
the magnetic field created by the infinite solenoid is zero and consequently 
should not have any effect on the particle. However, the effect just described 
has been observed in interference experiments (Bohm-Aharonov effect). This 
is a typical case where one's imagination is insufficient and where it is 
necessary to use differential geometry. 

Let us now consider a system of n identical particles; here the 
homotopy group consist of permutations of particles; one can show that 
there are exactly 2 possible prequantizations. 

Experience shows that nature chooses one or other prequantization, 
depending the type of particles, bosons or fermions (see Section 2); this 
choice is physically manifested by collectives properties: 

Fermions (for instance, electrons) satisfy the Pauli exclusion principle, 
which particularly allows the existence of the solid state; thanks to this prin- 
ciple we are unable to go through walls or floors. Bosons (for example 
photons), on the other hand, can all congregate into a single collective state. 
This is what happens in the coherent light of lasers; it is also this property of 
bosons that helps explain the phenomena of superconductivity and super- 
fluidity. 

We have just sketched a "bestiary" of quantum manifolds that are 
observed in nature. In order to proceed to the "zoological" level, one has to 
find some specific properties of quantum manifolds Y that are effectively 
observed. One of these properties is the following: Y should be able to 
accomodate a geometric object, called polarization, ~3) or even a more 
precise object called polarizator. (2I~ Christian Duval~5! has deduced from 
this hypothesis rules that are observed in all the examples known until now: 
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spin of a particle of zero mass has to be equal to the product of h/47~ by 1, 2, 
or 4; some gauge multiplets (see Section 7) are excluded, and this forbirds 
for instance the quarks to group themselves in pairs; etc. 

9. DOES QUANTUM MECHANICS EXISTS? 

Let us consider a quantum manifold Y, the structure of which is charac- 
terized by a tensor field co, (see Section 8). 

The symmetries of co, (in the precise sense of Section 4) are called 
quantomorphisms. These quantomorphisms constitute necessarily a group Q 
which define the geometry of Y. It is to this geometry that, for instance, the 
objects considered in Section 8, polarizators, belong. 

Q is not a Lie group because its dimension is infinite; however one can 
consider the universal covering Q' (see Section 2), which we will call the 
quantum group. Q' defines of course a "supergeometry" of Y, which will be 
used in quantum physics. 

The correspondences between groups we dealt with until now can be 
summarized by the following diagram: 

Q ' ~ Q ~ S  

where the two arrows are morphisms (see Section 3) and where S is the 
group of symplectomorphisms of X (Fig. 2). We shall now reinterpret 
elementary physical facts in this new description of nature. 

The quantities which can be physically measured--called dynamical 
variables or observables--are functions defined on the manifold X; however, 
they can also be defined as subgroups of Q' (subgroups of one-dimension). 
In Section 7 we have followed the inverse path: going from the subgroup and 
associating in with a dynamical variable, the moment. Universality of this 
notion is required here: The only observable quantities are now moments, 
each of which is linked to a natural symmetry. 

In classical mechanics (Sections 6 and 7) we have characterized the 
effective state of a system by a point of the manifold X (a "motion" of the 
system). We shall now modify this point of view, by making a more direct 
connection with the groups: a quantum state will be a function defined on the 
quantum group Q' and satisfying certain conditions that we cannot write 
down here in detail (the states constitute a convex set of "positive-definite" 
functions). 

In classical mechanics an observable f i n  a motion x of a system, took 
the value f (x) ,  and this was the value one imagined as being measured 
experimentally. Here, however, we have a new situation: An observable and 
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a quantum state define mathematically a spectrum (the Fourier transform of 
the function "quantum state" on the group "observable"). Physically this 
spectrum is the only available information concerning the results of 
measurements. Such is the probabilistic interpretation of quantum mechanics. 
The fact that the quantum group is noncommutative makes it possible to 
obtain systematic lower bounds on the width of this spectra; in such a way 
one generalizes Heisenberg's uncertainty relations. 

Let a be an element of the group Q' and let m be a quantum state; the 
function a(m), defined on Q' by the formula 

a(m)(b) = m(a -lba) 

is again a state; this formula defines an action of Q' on the set of states; 
hence the quantum states are themselves geometrical objects, which belong 
apparently to the supergeometry of Y. In fact, commutation relations show 
that the state a(m) depends on a only through its projection on the group S 
of symplectomorphisms. From this it follows that the quantum states are 
objects of symplectic geometry--in other words, they belong to classical 
mechanics. This is a precise formulation of the "correspondence principle" 
between quantum mechanics and classical mechanics. 

Quantum mechanics is not yet a closed mathematical theory; there still 
exists incoherences, and one can only apply it with certainty in domains 
which have been solidly tested, as in quantum chemistry, for instance; on the 
other hand, the theoretical basis of nuclear physics still remains to be 
constructed. 

The method sketched here (the "geometric quantization") does not 
escape completely these difficulties; the quantum states, which are in prin- 
ciple functions defined on the whole group Q', are in practice mostly only 
defined on more or less large subgroups. Hence one can only predict the 
spectra of some observables, but in these cases the theoretical predictions 
conform well to the experiments. 

Utilizing several tools of harmonic analysis (Gelfand-Naimark-Segal 
construction' and Stone theorem) one can exhibit a Hilbert space H. One is 
able to describe in this way a quantum state by a vector of H (which is only 
defined modulo a phase) and to associate with a classical observable a seU 
adjoint operator. In this way a connection is established between this 
"geometric quantization" and the usual procedures of quantum mechanics. 

We should remark that the definition of states as functions on a group 
is more general than their definition by a vector since it contains the case of 
the mixed states of quantum statistical mechanics (Gibbs states, Hartree- 
Fock approximation of quantum chemistry, etc.). 
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