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ON GEOMETRIC MECHANICS

Jean-Marie Souriau

Aix-en-Provence, France

Abstract. This survey paper introduces the reader to the origins of the Geo-
metric Mechanics theory and traces its subsequent history.

1. Applied Mechanics. I have studied problems of vibrations and stability which
arise in aeronautics as well as other technologies; this work has allowed me to elu-
cidate criteria of stability which may be formulated in easily calculated algorithms
from theoretical data, or from experiments. These have been used systematically in
various domains (subsonic and supersonic airplanes, navigational instruments, etc.).

This work comprised my thèse de Doctorat d’État, “Sur la stabilité des avions” [14].
See references [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

2. Theoretical Mechanics. The discoveries of Lagrange (Mécanique Analytique,
1788-1813) can be interpreted today in the language of global differential geometry:
the collection of motions 1 of a dynamical system is a manifold with an antisymmet-
ric flat tensor (a symplectic form) whose contravariant and covariant components
are respectively the “(round) brackets” and “(square) brackets” of Lagrange. This
structure contains all the pertinent information of the state of the system (positions,
velocities, forces, etc.).

The symmetries of a symplectic manifold induce a mapping which I have called
the moment map, which takes its values in a space attached to the group of sym-
metries (in the dual space of its Lie algebra); to the moment map is associated a
specific mathematical object, the symplectic cohomology.

In the case of a dynamical system, the moment map is a constant of the motion;
this result generalizes such earlier notions as the Hamiltonian, the invariant theo-
rem of Emmy Noether. It plays an important role in diverse branches of mechanics:
general theorems, reduction of partially symmetric systems (Marsden, Weinstein,
Arnold), classification of completely integrable systems, etc. There also exist appli-
cations to celestial mechanics, such as the so-called Robbin-Smale-Souriau theorem
on relative equilibria.
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1It is on this manifold of motions which Lagrange worked in his Mécanique Analytique (see

[88]); a tradition probably going back to Hamilton suggests instead the use of “phase space.” But
the definition of phase space depends on the choice at each instant of a frame of reference; it is
therefore inappropriate even for describing galilean relativity.

This is why we adopt the point of view of Lagrange: the manifold of motions is the mathematical
object appropriate for a relativistic or global study of mechanics.
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One of the principles of classical mechanics is that the Galilean group is a sym-
metry group of every isolated dynamical system. It suffices to admit that this
symmetry respects the symplectic structure in order to obtain a number of results –
beginning with the equivalence of action and reaction, which is no longer an inde-
pendent axiom. In the same way one obtains a purely geometric haracterization of
mass : it is the measure of the symplectic cohomology of the action of the Galilean
group. Taking account of this remark, one may apply a theorem which guarantees
that the manifold of motions is the Cartesian product of a 6 dimensional manifold
(the motions of the barycenter) with a reduced manifold. This barycentric decom-
position applies also to the conserved quantities: the 10 components of the moment
(energy, impulsion, etc.) are associated with 4 others; the kinetic momentum is a
sum: orbital moment + internal moment; in the same way, energy is decomposed
into kinetic energy + internal energy.

All the details of classical mechanics thus appear as geometric necessities. More-
over, this geometric formulation goes beyond classical mechanics stricto sensu; it
permits, for example, the construction of a precise model of particles with spin. A
spinning particle is not a top but a specific Galilean object; the spin is characterized
by a proper kinetic momentum independent of the motion. Thus spinning particles
possess a purely classical description, i.e., prior and underlying quantum mechanics.

On the other hand, certain “accidental” constants of the motion are associated
with hidden symmetries; e.g., in celestial mechanics the Laplace-Lenz vector is
connected to a somewhat mysterious symmetry of the Kepler manifold [66], the
space of constrained motions of a material point in a Coulomb field. Pauli and
Fock have presented this as an O(4) symmetry which prolongs the natural O(3)
symmetry; I have been able to calculate it exactly, as well as the symmetry of the
conformal group O(4, 2), associated with the conserved quantities defined by Bacry
and Gyorgyi.

I have also been able to construct a complete system of globally analytic first
integrals of the two body problem [83], which remain regular just as well away from
collisions as from the elliptic-hyperbolic transition; they embed the space of motions
in an algebraic manifold, whose complex analytic prolongation is still symplectic.
All the details of relativistic mechanics are also obtained from the symplectic struc-
ture, by simply changing the symmetry group: (the Lorentz-Poincaré group is sub-
stituted in place of the Galilean group). The fact that the symplectic cohomology is
then null explains the lack of conservation of mass in relativity; there exists a pre-
cise procedure passing from the Galilean momentum to the relativistic momentum
which contains among other things Einstein’s relation E = mc2, etc.

The symplectic structure has the remarkable property to be able, in certain
cases, to be reconstructed from its symmetries alone (the Kirillov-Kostant-Souriau
orbits); I have been able to construct by this technique some relativistic mechanical
models a priori for elementary particles; geometry alone shows that they must be
characterized by an internal mass, an internal kinetic momentum and, in the case
of zero mass, a spatial orientation. The particles which one observes are inscribed
in this scheme (for example: photons in their state of circular polarization, left or
right).

The relativistic dynamics of these particles results – notably those particles with
spin: precession of spin, magnetic resonance, the Bargman-Michel-Telegdi equations
(with a correction for which the level is below the precision of the measurements).
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Experiments have led to the discovery of other conserved quantities attached to
particles: isotopic spin, color, charm, etc.

In 1960 [27], I obtained the first model of the baryon octet constructed from
a unitary representation of a symmetry group of strong interactions (the group
SO(8)).

The group SU(3) is a sub-group of SO(8) (via the adjoint representation). This
is a representation of the reduced group which furnished in 1961 the Gell-Mann-
Ne’eman model; the development of this line led successively to the quark model,
then to the quantum chromodynamics. In such gauge theories, the dynamical sys-
tem is physically a multiplet of particles; mathematically it is constructed on a
symplectic manifold, support of symmetries (strict or approximate).

The symplectic structure remains pertinent to the modeling of more complex
objects; thus the exceptional symmetry of the Kepler manifold (see above) explains
the existence of layers in hydrogenöıds atoms ; the moment map is applied to the
study of collective models (nuclear drop model; S. Sternberg); it furnishes a gen-
eralization of the Hartree-Fock theory (Rosensteel and Rowe, 1981); etc. See the

references [15, 16, 27, 29, 31, 32, 33, 40, 43, 45, 46, 47, 48, 49, 59, 63, 66, 69, 83, 88];
and, for synthetic expositions, [50, 62, 85] or [74, 81, 82].

3. Continuous media, Statistical mechanics, Thermodynamics. I devel-
oped, beginning in 1970, a description of matter by an “Eulerian tensor-distribution”
which is valid as well for condensed states as for continuous media; it permits a uni-
form treatment of the dynamics of mechanical structures on our scale (shells, plates,
beams, cords) and that of particles – including particles with spin. This description
is complementary to that obtained beginning with symplectic symmetries (§2).

This method is applied in classical mechanics as in special or general relativity.
It structures interactions of matter with the electromagnetic field as well as with the
gravitational field. In the case of particles it gives a geometric interpretation of the
mass, spin, electric charge, and the electric and magnetic moments. In conjunction
with measure theory (see §§3 and 4), it describes the statistical effects: thus a
distribution of particles with spin gives a realistic model of macroscopic magnetism:
magnetization, gyromagnetic effect, magnetostriction.

The method also permits a description of the individual or statistical behavior of
particles subjected to a gauge field (Duval, Weinstein, Guillemin-Sternberg). The
equations thus obtained are in general non-predictive (which differentiates them
absolutely from the symplectic description which contains within it the equations
of evolution; but they associate the conserved quantities with the symmetries of the
field: thus non-Noetherian quantities).

Let us consider now an isolated dynamical system, described by a symplectic
manifold. This structure must persist in the presence of an external field; consider
the gravitational case.

Since the system is isolated, so that it is not subject to an external gravitational
field, we are therefore in the conditions of special relativity. Imagine however an
infinitesimal perturbation of the gravitational potentials in a bounded region of
space-time. If the system crosses this region, it will be subject to a gravitational

scattering which may be described by an “eikonal” function. In applying the prin-

ciple of general relativity (in other words, the invariance of the gravitational gauge),
one states that the eikonal defines an Eulerian tensor-distribution Θ whose support
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consists of the world lines of the particles constituting the system; each motion x is
thus localized in space-time.

Outside the perturbation zone, the moment map

Ψ : x 7→ m

is factored via the localization
x 7→ Θ

into

x 7→ Θ 7→ m,

the mapping Θ 7→ m being defined by the non-Noetherian conservation laws indi-
cated above.

This abstract result will be a key for the interpretation of statistical mechanics.
In classical statistical mechanics a state is constituted by a solution of the Liouville
equation on the phase space, the partition function. This definition is simplified by
Lagrange’s viewpoint that a statistical state is simply a probability measure ρ on
the manifold of motions.

Let us use the “localization” x 7→ Θ. By simple linearity the mean value of Θ in
the statistical state ρ is again an Eulerian tensor-distribution T ; if ρ is sufficiently
smooth, T will be a symmetric solution of the Euler-Einstein equations of continuous
media; T will thus give a space-time interpretation of the statistical state in terms
of density, specific impulse, and stress 2. The factorization lemma above shows
that the non-Noetherian conserved quantities associated with the tensor T are the
components of the mean value in the state ρ of the variable moment m = Ψ(x).

It is a question therefore of the mean value of the spectrum of the moment m,
i.e., of the image under Ψ of the measure ρ. By construction this spectrum is a
constant of the motion. Suppose now that the system undergoes, for a certain
time, a dissipative process. Experience shows that the spectrum of the moment is
modified – the spectrum of the energy, for example, appears “smoothed out”; the
statistical state itself has thus been modified by the dissipation. How? We do not
know.

It is therefore not legitimate to invoke the mechanical theorem of live forces to

justify something that would resemble the conservation of energy in thermodynam-

ics. But general relativity will show that dissipative evolution cannot modify these
spectra in any manner whatsoever. Indeed, the tensor T , which we have interpreted
in non-dissipative (time) periods as a characteristic of gravitational susceptibility,
is at the same time a local source of the gravitational field (the second member of
Einstein’s equations).

Now this second member exists as well during the dissipative periods – even if
we do not know how to calculate it – and automatically satisfies Euler’s equations
(as consequences of the Bianchi identities applied to the first equation). T – which
before and after the dissipation coincides with the statistical mean value of the
moment – therefore possesses an Eulerian interpolation during the dissipation.

The globally conserved non-Noetherian quantities associated with T take the
same values before and after the dissipation – precisely because they are conserved.
Now we know that in the two statistical states they coincide with the mean value
of the moment. Whence the result:

2From this the interpretation of pressure as a manifestation of the stochastic character of
velocity in the kinetic theory of gasses. The stress in a solid medium may account for quantum
effects.
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The spectra of the ten components of the moment are generally modified by the
dissipative processes; but the mean values of these ten spectra are conserved 3.
The first of of these spectra is that of the Energy; the conservation of its mean
value is precisely the first principle of thermodynamics. This principle is thus fallen
from its primitive status and reduced to the state of a necessary consequence of
the invariance of the symplectic structure in gravitational gauge transformations.
Besides it is completed by 9 other thermodynamical conservation laws. This method
known as ”Souriau Scattering” is easily extended to the case of the electromagnetic
field (conservation of the mean electric charge); it is also extended to the general
case of gauge fields (Duval, Guillemin-Sternberg).

The second principle of thermodynamics is independent: it indicates that the
entropy S increases during a dissipation; here we mean entropy in the sense of
Clausius-Boltzmann, which is a function of the statistical state ρ. If therefore a
state possesses, for a given mean value of the moment, greatest entropy, it will not

be subject to dissipation. These states, if they exist, thus represent the terminal

state of dissipation. They are indexed by a parameter β with values in the Lie
algebra of the Lorentz-Poincaré group; they generalize the Gibbs equilibrium states,
β playing the role of temperature.

The invariance with respect to the group, and the fact that the entropy S is a
convex function of β, imposes very strict, universal conditions – i.e., independent
of the system considered. For a large class of systems, for example, there exist
necessarily a critical temperature beyond which no equilibrium can exist. In the
cases where an equilibrium exists, it generally consists of a rigid rotation about the

barycenter, etc.
These purely theoretical results are evidently confirmed by numerous astronom-

ical examples: the Earth and the starts rotating about themselves; dissipative evo-
lution imposes a solid rotation on the central regions of the galaxies, which itself
can lead to a gravitational instability of the “quasar” type; the Clapeyron relations
extend to the geometrical-dynamical quantities 4, etc.

One can, if one wishes, interpret β as a space-time vector (the temperature vec-

tor of Planck), giving to the metric tensor g a null Lie derivative. This suggests
describing the dissipative processes by a temperature vector β which is no longer
compelled by this condition; the corresponding Lie derivative of g, the “friction
tensor,” becomes the source of the dissipation.

One obtains in this way a phenomenological model of continuous media which
presents some interesting properties: the temperature vector and entropy flux are
in duality; the positive entropy production is a consequence of Einstein’s equa-
tions; the Onsager reciprocity relations are generalized; in the case of a fluid in in
the non-relativistic approximation, the model unifies heat conduction and viscosity

(equations of Fourier and Navier). See references below [17, 19, 20, 28, 37, 44, 53,
54, 55, 56, 61, 63, 65, 67, 69, 73, 76, 77, 78], and for synthetic expositions, see

[38, 3, 81].

4. Differential geometry and quantum physics. In his “Principles of Quan-
tum Mechanics,” Dirac considered a classical dynamical system; he postulated that
one could associate to each observable an operator on a Hilbert Space H, this corre-
spondence supposedly being linear, and satisfying certain commutation conditions.

3These mean values are thus “memorized” by the gravitational field.
4They apply, for example, to the pair: inertia momentum – angular velocity.
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Taken literally, these principles can have but a heuristic value; they are at the same
time contradictory (they must be weakened in order to obtain a coherent theory)
and incomplete (implicit complementary hypotheses arise when one applies them
in concrete cases).

The search for a theory mathematically coherent and physically achievable, which
would constitute a “rational quantum mechanics,” is the program of geometric

quantization.
I have given a construction which resolves the first of the “problems of Dirac”

– in 1962 for the case of a Lagrangian system, and in 1965 in the general case –
today called “pre-quantization.” One considers a space Ξ fibered into circles over
the manifold X of motions, equipped with a connection 1-form whose curvature co-
incides with the symplectic form of X (§2). Ξ is called the quantum manifold. One
defines H as a space of functions on Ξ, on which there is a unitary representation
of the group G of automorphisms of Ξ. A classical observable γ is identified canon-
ically with a one parameter sub-group Γ of G (the symplectic converse of Noether’s
theorem). The infinitesimal action of Γ on H furnishes the operator associated
with γ. An equivalent construction was subsequently proposed and published by
B. Kostant, with another problematic.

Independent of the problem of Dirac, the existence and uniqueness of such a
quantized fibre bundle is a problem in global geometry, whose solution depends on
homological and homotopic properties of the space of classical motions. Thus:

• in the case of a particle with spin, the pre-quantization is possible only when

the spin is an integer multiple of h/4π (h = Planck’s constant), which is an
experimental law;

• the symplectic manifolds associated with particle multiplets are themselves
also pre-quantifiable;

• a system of identical particles possesses exactly two pre-quantizations, which
may be interpreted physically by the Bose-Einstein and Fermi-Dirac statistics;

• in the case of a particle in motion along a rectilinear conductor, there exist a

priori an infinite continuum of non-equivalent quantizations; that chosen by
nature is determined experimentally by the Aharonov-Bohm effect (P. Hor-
vathy).

All these facts thus suggest that pre-quantization corresponds to a physical real-
ity; but they do not yet furnish the key permitting us to give a rigorous framework
to Quantum Mechanics. A first progress has been accomplished using the structure
today called polarization, which I had introduced in 1953 to interpret the Jacobi
theorem [15]. I was able, thanks to polarizations, to construct beginning with sym-
plectic models the wave equations of free elementary particles (Schrödinger, Pauli,
Dirac, Maxwell, Yang [50]). Kostant for his part has shown that the polarizations
permit the construction of irreducible unitary representations of certain Lie groups.

I have also proposed a more strict mathematical object, the Polarizer, which
seems to exist effectively in the case of quantum manifolds associated with material
systems (the relativistic wave equations, particle multiplets, etc.; see the works of
C. Duval). But the choice of polarization breaks the symplectic symmetry, even in
the most elementary case, that of a linear system.

However, in this case, the symmetry must be able to be preserved; this resulted
in the works of Stone, Shale, André Weil, V. Bargmann in the 1960’s, who have
shown the existence of a unitary representation which answers the question. How



ON GEOMETRIC MECHANICS 601

does one describe in detail this abstract structure with the objectives of symplectic
mechanics?

I resolved this problem in 1975 [70], utilizing the Maslov index, a generalization of
the Morse index made precise notably by the work of Arnold and Leray. The Fourier

transform between two n-planes into duality can be interpolated – by regarding
them as transverse Lagrangian planes of a linear symplectic space. But the coherent
definition of phases in the various spaces comes up against a difficulty: it is a
question of cohomological obstruction.

This obstruction is resolved by lifting to the covering of the manifold of La-
grangian planes, where the “signature” of Leray becomes the coboundary of the
Maslov index. This gives a representation, not of the symplectic group, but of its
metaplectic covering: the abstract representation of Shale-Weil becomes explicit.
This algorithm has been previously used to construct representations of other Lie
groups (G. Lion, M. Vergne). The problems of linear quantum mechanics are thus
resolved; for example the Schrödinger equation of any harmonic oscillator is in-
tegrated explicitly, which produces the integration formula of Feynman (with a
correction which is necessary beyond the first half-period of motion).

In the preceding examples where quantization is successful, the space of motions
was a coadjoint orbit of a certain Lie group. But it concerns only exceptional objects:
the non elementary object most discussed, the hydrogen atom, is not modeled by
such an orbit unless one abstracts the free motions (consequently the ionization and
the continuous spectrum are neglected). Again it involves a very simplified model,
spin and the magnetic moment of the proton and electron which constitute the
atom are neglected.

In 1985 I constructed a more realistic classical model of the hydrogen atom,
which took into account all types of electromagnetic interactions (charge - charge,
charge - magnet, magnet - magnet). It involved a symplectic manifold of dimension
16, on which the Galilean group acts naturally (thus a non-relativistic model). The
general barycentric decomposition theorem (§2) permits a reduction to a symplectic
manifold of dimension 10.

This model has been taken as a test of the heuristic methods of quantization by
Duval, Elhadad, and Tuynman (1987). One thus obtains all the observed terms:
spin-orbit coupling for the electron (fine structure) and for the proton, spin-spin
coupling (hyperfine structure), a diamagnetic term. But these methods do not give
good numerical values for the coefficients – values for which experiments determine
with great precision. Worse, the different methods are in contradiction on this point,
even in the non-relativistic approximation. Quantum physics is still not capable of
giving a coherent model of the hydrogen atom which conforms to experiment.

It is therefore tempting to turn toward the methods of quantification emanating
from group theory – which requires an enlargement of the frame of Lie groups. I
have defined to this effect the structure of “differential group” (1979), subsequently
re-analyzed in diffeological spaces and groups. The idea is to weaken the axioms of
manifolds, replacing the notion of chart with that of “plots,” not necessarily invert-
ible, and which does not put in play any particular dimension. One thus obtains a
“closed Cartesian” category, in which differentiable mappings of diffeological spaces
are themselves organized into diffeological spaces.

It turns out that the important theorems of differential geometry hold as well in
this extended framework – under the condition, of course, that they are correctly
reformulated. Homotopy of groups, and more generally of diffeological spaces (c.f.
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the works of P. Donato and P. Iglesias); fibrations and connections (P. Iglesias [99]),
differential forms à la Cartan, and in particular invariant forms of groups on which
the coadjoint representation is very naturally extended; etc.

This “general diffeology” appears to furnish the necessary infinite dimensional
objects in diverse physical theories. Thus the set of sections of a fiber bundle (fields)
can be equipped with a particular “diffeology,” the so-called “controlled diffeology,”
which is well adapted to the formulation of the calculus of variations; 1-forms of
this space of fields (distibutions) contains and generalizes distributions.

For example the collection L of Lorentzian structures of the space time manifold
X can be equipped with the “controlled diffeology,” as well as the group Diff(X)
of diffeomorphisms of X . The action on L of the composition of the connected
component G of Diff(X) is a principal fibration (in the diffeological way!) whose
base H shall be called Physis. A 1-form on L is a tensor distribution; in order that
this 1-form be basic, it is necessary and sufficient that it be Eulerian.

This way is geometricized the duality between the principles of conservation

of mechanics (which are formulated by the Eulerian nature of the distribution of
matter) and the principle of relativity (which postulates the inobservability of the
action of the gravitational gauge group G). Matter and geometry in the universe
are described by a single point of the cotangent of the Physis H .

The Einstein equation itself is formulated by a global 1-form on H (closed and
exact), to which must belong the matter-geometry couple. This interpretation gen-
eralizes to electrodynamics : the distribution of matter is associated with the distri-
bution of current and electric charge – in such a way as to take into account the
electrostatic force and the Laplace force: the 10 gravitational potentials gµν are
associated to the 4 electromagnetic potentials Aρ. The gravitational and electro-
magnetic gauge groups constitute a semi-direct product; and the coupled Einstein-
Maxwell equations define a closed 1-form on the new Physis [90].

Diffeology also permits the attainment of other types of objects, whose dimension
is no longer infinite, but whose topology is larger. This is the case of the torus of

Denjoy-Poincaré (quotient of the usual torus by an line of irrational slope), which
however is a good diffeological space. Its diffeomorphisms, the fibres of which it
is the base, have been classified. This classification puts in play the arithmetic

properties of the slope (irrational quadratic, diophantine – see the works of Donato
and Iglesias). These constructions will perhaps permit us to cast a new light on
some problems of theoretical mechanics.

Let us return to the problem of geometric quantification. It happens that all the
pre-quantizable symplectic manifolds (hence those which model a concrete physical
system) are coadjoint orbits of a diffeological group G. By extension of successful
examples of quantization (free elementary particles and the Poincaré group, linear
systems and metaplectic representations), one can hope to describe the quantum
physics of the system by means of certain unitary representations of such a group.

What are the suitable representations? I proposed in 1986 a definition of “quan-

tum representations”; it is founded on the axioms of “quantized states” 5. A quan-
tized state m is a complex function defined on the group G, satisfying a double set of
inequalities. These axioms guarantee first a probabilistic interpretation of quantum
mechanics: the state m associated with all “observables” of G a probability law:

5This axiomatic system is applied a priori to a case larger than that of just the symplectic
manifolds; there exists, for example, a quantized representation of the Weyl-Heisenberg group in
infinite dimension.
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in the linear case the Heisenberg uncertainty relations are automatically satisfied.
The collection of quantized states possessed is a weakly compact convex set; the
Krein-Milman theorem therefore permits the generation of this convex set by its
extremal points (pure quantized states).

Thanks to the Gelfand-Naimark-Segal construction, every quantized state m can
be characterized by the triple consisting of a Hilbert space H, a state vector Ψ in H,
and a unitary representation u of G on H. This representation may itself be qualified
as “quantum,” in the sense that every unit vector Ψ of H defines a quantized state.
The representations associated with pure quantized states are irreducible.

By assuming a continuity hypothesis, one associates to each classical observable
of the group (defined by a one parameter subgroup) a self-adjoint operator of H

(Stone’s theorem); this is with the following properties:

• for each Lie subgroup of G, linearity and the commutation relations of Dirac

are satisfied;
• if a classical observable is bounded, the spectrum of the associated operator

admits the same bounds.

The convexity of the space of states produces the “mixed” quantized states whose
existence is necessary to quantum thermodynamics (Gibbs states) and quantum

chemistry (molecular orbitals, Gibbs states at absolute zero).
The preceding results thus give a coherent mathematical structure for the usual

procedures of quantum mechanics. It is still necessary that there exist at least

one quantum state; the others are constructed by methods of non-commutative
harmonic analysis.

The problem of existence has been resolved – with conclusions conforming to
physics – in several interesting cases : the Stern-Gerlach effect, quark model, Heisen-
berg group in finite or infinite dimensions; research continues in these areas. On

these questions see the book [50] and the articles [15, 16, 33, 40, 43, 46, 47, 48, 64,
70, 71, 72, 74, 80, 81, 82, 84, 86, 87, 89]; as well as the theses of Duval, Donato,

Horvathy, Iglesias, Tuynman.
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(1959), 1478–1480.
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matical physics” (Liège, 1980/Leuven, 1981), Math. Phys. Stud., 3 Reidel, Dordrecht, (1983),
37–68.
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[96] J.M. Souriau, Une alternative au modèle standard, Science et Vie Hors Série (Le Big Bang
en question), 189 (1994), 132.

[97] J.M. Souriau, Milieux continus de dimension 1,2 ou 3 : Statique et dynamique, Congré
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